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Abstract

We present a surface compression method that stores
surfaces as wavelet-compressed signed-distance volumes.
Our approach enables the representation of surfaces with
complex topology and arbitrary numbers of components
within a single multiresolution data structure. This data
structure elegantly handles topological modification at high
compression rates. Our method does not require the costly
and sometimes infeasible base mesh construction step re-
quired by subdivision surface approaches. We present
several improvements over previous attempts at compress-
ing signed-distance functions, including an

�������
distance

transform, a zero set initialization method for triangle
meshes, and a specialized thresholding algorithm. We
demonstrate the potential of sampled distance volumes for
surface compression and progressive reconstruction for
complex high genus surfaces.

1. Introduction

The rapid increase in computing power and advance-
ments in surface acquisition techniques have enabled the
creation of meshes of 400 million triangles and larger
[18, 15]. This has led to a dilemma in surface visualization:
meshes of this size and complexity require both efficient
compression techniques and a capacity for level-of-detail
interrogation. Progressive compression algorithms enable
both efficient compression and level of detail reconstruc-
tion. A progressive compression algorithm re-orders the bit
stream in such a way that the most relevant information is

near the front of the stream. Thus, with a small number
of bits a usable approximation of a surface can be obtained
for interaction and browsing. This paper presents a sys-
tem for progressively compressing surfaces via a signed-
distance representation. Our approach efficiently represents
complex surfaces with arbitrary numbers of components,
removes the need to explicitly store the topology of the sur-
face, and can be extended to time-varying surfaces.

Recently, subdivision surfaces have been shown to be ef-
fective for surface compression as the connectivity informa-
tion only needs to be stored for the base mesh. The work
of Khodakovsky [14] and Bertram [2] show that wavelet-
based techniques on subdivision surfaces result in compet-
itive compression rates and allow for progressive decom-
pression. However, subdivision techniques require a coarse
base mesh. Base mesh construction for large and complex
surfaces with many components is difficult and often in-
feasible. Even if a base mesh is produced, a surface with
hundreds or thousands of components requires topological
modification in order to achieve usable progressive recon-
structions.

In this paper we advocate an alternative approach to sur-
face compression which is based on a signed-distance vol-
ume representation [26, 6]. A signed-distance volume is
a trivariate function encoding the minimum distance to a
surface for each volume sample. The sign changes as the
surface is crossed. Figure 1 depicts the data flow in our sys-
tem. The resulting compressed surface is reconstructed by
extracting the isosurface with zero distance.

The signed-distance representation does not directly
specify the topology of the surface. This freedom from stor-
ing the topology increases the potential for using simple al-
gorithms that will extend elegantly to high genus surfaces
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Figure 1. The compression system comprises
four modules. The input surface is trans-
formed into a distance representation then
decomposed into linear B-spline wavelet co-
efficients. A thresholding algorithm is ap-
plied that sets a large number of wavelet co-
efficients to zero. The distance information
is used to insure that the surface geometry is
retained. Finally, a zero-tree coder produces
the progressive bit stream.

and time-varying surfaces. We achieve a multiresolution
representation by applying a linear B-spline wavelet decom-
position to the implicit function. Compressing multiresolu-
tion signed-distance functions has been studied in [8, 7].
Our contribution is a complete system that overcomes the
problems of existing distance-based compression methods.
The main features of our method are as follows:

1. Progressiveness: we generate a progressive encoding
of the distance function which can be partially recon-
structed from the most relevant bits of the most rele-
vant wavelet coefficients. The implicit nature of our
representation facilitates topology modification to re-
duce the complexity of the approximate surfaces be-
yond what is attainable by subdivision surface meth-
ods.

2. Scalability: the method is not limited by the need to
re-map a complex surface to a base mesh with subdi-
vision connectivity. Our thresholding method removes
wavelet coefficients that do not contribute to the zero
set resulting in a size related to the surface complexity.

3. Simplicity: the distance volume representation dis-
penses with a lot of the algorithmic complexity associ-
ated with base mesh construction and explicit topology
tracking. All operations in our method are performed
on regularly sampled volumes.

4. Autonomy: the algorithm requires only a desired bit
count in order to produce a compressed file. This is
in contrast to subdivision methods which may require
explicit base mesh vertex positioning for sharp features
[14], editing operations [11], or multiple fitting param-
eters for obtaining the base mesh [1].

2. Related Work

Wavelet transforms have been used to obtain multireso-
lution representations of scalar volume data for rendering
and compression [19, 20, 21, 9, 10]. Tao [23] describes a
system for progressively transmitting volume data encoded
as wavelet coefficients. Volume compression techniques
[18, 13] based on wavelet transforms have been used to
facilitate the visualization of large data sets. The present
work uses standard wavelet transforms on volumetric data
but is not concerned with representing the entire volume.
We retain only the minimal number of wavelet coefficients
necessary to represent a surface.

Multiresolution techniques have also been investigated
in the implicit surface literature. Velho et. al. [25] proposed
a multi-scale implicit representation based on a biorthogo-
nal B-spline wavelet transform. Their technique produces
a representation based only on B-spline scaling functions.
They eliminate the wavelet coefficients by projecting the
wavelets onto the scaling basis functions at the next finer
scale. This eliminates the wavelet coefficients at the cost of
an increased number of scaling coefficients. The trade-off
is that all modeling and rendering operations are performed
on a hierarchical B-spline representation. The work does
not explicitly treat the problem of compressing the result-
ing data.

Closely related to the present work is the technique of
Grisoni [8, 7]. They represent the field function of an im-
plicit surface as a sampled volume and apply a wavelet
transform to obtain a multiresolution representation. Fol-
lowing Velho’s method, they project the wavelets onto the
scaling basis at the next finer level producing a data struc-
ture with only scaling coefficients. Their thresholding
scheme operates on the projected coefficients. The location
of the wavelet coefficients is not considered in the thresh-
olding process. In some cases coefficients affecting the re-
constructed surface may be thresholded. They propose a
sparse representation based on a hash table storing the lo-
cation and value of each coefficient in a packed three byte
block. Coefficients at coarser scales require fewer bits for
encoding position and thus increase the number bits avail-
able for quantizing the coefficient value. The present work
provides both a location-based thresholding scheme and a
progressive bit ordering that reduces geometric error and
improves compression.



3. Signed-Distance Volumes

A signed-distance volume encodes the minimum dis-
tance to a surface for each sample point. The distance
changes sign at the surface so that negative values lie on one
side and positive values on the other. Given a closed shape,
the sign determines whether a point is inside or outside of
the shape. For isosurfaces, the notion of inside and outside
is not always applicable as the surface may exit the distance
volume. In these cases the sign of the distance is deter-
mined by the scalar function without relying on notions of
inside/outside. We formally define the signed distance from
a surface � as:������� �	� ��
� ������� �	� ����� ����������� ����� �"!#� �

(1)

where
������� �	� �

is negative on one side of the surface and
positive on the other. Most scanned objects are single closed
components. An inside/outside relation can be defined for
closed meshes if triangle normal vectors are oriented con-
sistently. Isosurfaces from trilinearly interpolated scientific
data also have this property although an isosurface may
have a boundary on the boundary of the sampled volume. In
such cases the boundary of the distance volume must coin-
cide with the boundary of the scientific data. In the remain-
der of the paper we will use

� �	� �
to denote the approximate

distance as computed by a distance transform algorithm.

3.1. Error Metrics

Surface errors are required to study the rate distortion
properties of our algorithm. We adopt the $�% error metric
used in [14] and measured by the METRO tool [4]. The
error is defined by taking the maximum of & �	')( � � and& � � (�' � , where & �	'*( � � is the distance between two sur-
faces

'
and � defined as:

& �+'*( � �,�.- /021�340 �	' ��576 �28 & �+�9( � � %4: �<;>=�? % (2)

and & �	�9( � � is the Euclidean distance from a point
�A@B'

to the closest point on � . All errors reported in this paper
are relative to the bounding box diagonal length.

4. The Distance Transform

We apply a distance-transform algorithm to surfaces de-
fined by triangle meshes and to isosurfaces from regularly
sampled volumetric data. The transform produces an ap-
proximation of the actual distance function based on the
closest-point propagation algorithm of Breen [3]. We have
modified Breen’s algorithm so that it runs in

��� ���
time. The

distance volume is initialized with closest-point information
for all cells intersecting the surface to be encoded (the zero

� �DC �
Current approximate unsigned distance�E� �DC �
Sign of distance function0 �GF �DC � True if sign is ambiguous (

��� �DC �
undefined)HJI �KC � The closest point of

C
(
� �DC �,�L�MCN� HJI �KC �O� )

Table 1. Properties of distance samples

set). These are the only explicit computations with respect
to the input surface. Once the zero set is initialized the prop-
agation algorithm assigns the closest points to the rest of the
volume samples. The zero set signs are also initialized and
this information is propagated along with the closest points.

The propagation technique is essentially a point sam-
pling approach, as the approximation is produced with re-
spect to the initial set of closest points in the zero set. We
begin by describing the propagation algorithm, then de-
scribe the zero set initialization methods for scanned and
scientific surfaces.

4.1. Closest Point Propagation

The distance transform operates on a volume of regu-
larly spaced samples. Let

C
denote a sample of a distance

volume. Table 1 lists the properties of a distance sample
C
.

The output of the algorithm is a regular volume of signed
distance values.

The closest point propagation algorithm relies on the fol-
lowing heuristic: the closest point of a sample

C
will in

most cases be geometrically close to the closest points of
the neighbors of

C
. The propagation algorithm is as follows:

For all distance samples P : Q<R+PJSUTWVYXJZ []\�XJ^
Initialize the zero set of the distance

field as described in the following

sections.

Place all zero set samples in a FIFO

queue _
while _ is not empty do

Let Pa`cb�d�\4e�^OR	_fS
For each 26-neighbor g of P do

If hEikjlR+PJSnmogkh�pBQqR�grS thenikjqR�g�SU`sitjqR+PJSQ<R�g�SU`uh�gvmoitjnR�g�Skh
Place g onto back of _

If XOVxw<R+PJS9T"b�XMy{zr| then zrenR�grSv`}zrenR+PJS
Breen et. al. presents a method based on a priority-queue

that always examines the sample with the smallest distance,
insuring that each sample is visited only once by the algo-
rithm. This leads to an expected running time of

��� �>~�� � ���
where

�
is number of samples in the distance volume. The

algorithm presented here computes the same approximate
distance volume, but may set the distance value of a sample
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Figure 2. Zero set initialization for triangle
meshes: the sign of a distance sample is de-
termined using the vector �� from the closest
point to the sample and the triangle normal
vectors �� .

multiple times. On average each distance sample is updated
only 1.2 times for the surfaces we examined. Thus, the algo-
rithm runs in time

�������
on these surfaces because a simple

queue provides constant time access.

4.2. Zero Set Initialization of Isosurfaces

Our implementation can produce signed-distance vol-
umes of isosurfaces defined on regularly sampled scalar
fields. Instead of formally defining the isosurface with re-
spect to trilinear interpolation, we compute closest points
based on local gradient estimates. The distance approxima-
tion is constructed at the same resolution as the initial scalar
field. The algorithm examines each volume cell in the scalar
field. If the cell contains the isosurface, then the distance
samples at the cell corners are initialized with closest point
information. Once a distance sample has been initialized it
is not reinitialized later for another incident cell.

We denote the scalar field by � �DC � . Let ��� denote the iso-
value of the desired isosurface. We define a linear approx-
imation about a sample

C
as �� �KC	� � � � �KC ��
� � �DC � �KC	�9� C �

and compute the closest point:

HJI �DC �a� C�
 � � � � �KC ��	� � �DC �O� � � �DC � (3)

The scalar field gradient at a given sample point
C

is es-
timated by central differencing. The sign of the distance
is positive if � �DC ��� ��� and negative otherwise. This ap-
proximation is inaccurate for high curvature regions but can
be computed very efficiently. Greater accuracy can be ob-
tained by performing Newton iterations, or by extracting a
mesh and applying the technique in the next section.

4.3. Zero Set Initialization of Meshes

The zero set initialization for triangle meshes operates
on individual triangles. The algorithm does not use edge
or vertex adjacency information. In the pseudocode below,HJ3 ~�~ � � ����� is defined as the distance between distance sam-
ples in the

�
,
!

, and � directions. The zero-set initialization
algorithm proceeds as follows:

For every triangle � in the input mesh:

Compute the triangle bounding box

defined by ( ����������� ���!�"�$#%�����7S andR&���('*)+��� �,'*)-��#.�('*)�S
Reduce R&�����!����� ���!�"�$#%�����7S by ik|ky{y /10�Q ^$2
Increase R&���,'*)-�3�4�,'*)+�$#%�,'*)�S by it|ky{y /10 Q2^$2
For each sample P in the adjusted

bounding box:

Compute ikjqR+PJS on �
Record whether ikjqR+POS lies on a

face, edge, or vertex.

Let 5�T h�ikjlR+PJSnm P h
If 57698;:=< it|ky{y /10 Q2^$2 and 5 pBQqR+PJS

then:

place the sample on the queue

of zero set samples.

Set a flag indicating that

the sample is queued to

prohibit duplication.

Set zreqR+PJS based on whether ikjqR+PJS
lies on a face, edge, or

vertex as explained below.

The sign of a given sample is computed based on the lo-
cation of its closest point (vertex, edge, or face). Figure 2a
shows the simplest case where the closest point lies on a
face. In this case the sign is given by the sign of ��?> �@ where
�� is the triangle normal and �@ is the vector from the clos-
est point to the distance sample. If the closest point lies on
an edge as in Figure 2b, then there are are two dot products
(one for each triangle sharing the edge). The absolute values
of the dot products are compared and the sign of the larger
dot product is taken. Finally, a closest point which coincides
with a vertex of the mesh as in Figure 2c may be ambiguous
if some dot products are negative and others are positive. In
these cases the distance sample is marked as ambiguous and
no sign information is propagated for it. After the distance
transform has completed the ambiguous samples are revis-
ited and the following heuristic is applied: the signs of the
26-neighbors are examined and the sign of the majority of
the neighbors is assigned to the sample. Our method is very
similar to the technique in Huang et. al. [12]. However,
their algorithm does not detect the ambiguous vertex clos-
est points and may initialize the incorrect sign.
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Figure 3. (Left) Decomposition filter bank with
low pass filter �� and high pass filter �� . (Right)
Reconstruction filter bank with low pass filter�

and high pass filter � .

5. Wavelet Transforms

A wavelet transform [17] decomposes a signal into a se-
quence of wavelet coefficients representing the details of the
signal at several levels of resolution. These coefficients are
often of small value and can be compressed efficiently.

5.1. Fast Wavelet Transform

We use the fast wavelet transform of Mallat [16] to gen-
erate multiresolution representations. The left half of Fig. 3
shows one step of decomposition algorithm. At each step a
low pass filter

��
produces a set of scaling coefficients ( ���	� = )

which coarsely approximate the input data. Additionally,
a high pass filter

�
 produces a set of wavelet coefficients
( : �	� = ) representing the details lost in the coarse approxi-
mation. These two filtering steps are repeated recursively
on the coarse approximations to obtain a multiresolution
representation. At each stage the size of the data is down
sampled by a factor of two. We will use the term subband
to refer to a set of wavelet coefficients generated by one step
of the transform.

The original data can be reconstructed by reversing the
process with another set set of filters

�
and 
 . The right

half of Fig. 3 shows one reconstruction step. Both fil-
ters are preceded by an up sampling by two which in-
serts zeros between each pair of input values. The low
pass filter

�
, when combined with up-sampling, is simi-

lar to a subdivision operator, smoothing coarse approxima-
tions. The high pass filter 
 re-introduces the details en-
coded by

�
 and enables exact reconstruction of the data. In
the present work we use the linear B-spline wavelets with���� ��,� /���� ��� / (�� (�� (���( � / � , ��� �� � /�� ��� / (���( / � ,�
 � ��l� /�� � � / (���� ( / � , and 
 � ��n� /���� � / (���(#���<(���( / � .

The 2D extension of the algorithm in Fig. 3 is shown
in Fig. 4. The one dimensional transform is alternately ap-
plied to each dimension, creating subbands 1 and 3 in the�

direction ( : = , :�� ) and subbands 2 and 4 in the
!

direc-
tion ( : % , :�� ). The 3D case follows the same pattern as Fig.
4 except that the transform directions cycle through the

�
,

1
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Figure 4. Two dimensional extension of the
filter bank by alternating the directions of the
filtering steps.

!
, and � directions. Some readers may note that in image

processing applications the high pass coefficients resulting
from the

�
direction filtering are processed by the filter bank

a second time in the
!

direction yielding three sub-bands
per level in the 2D case and seven subbands in 3D (after a �
pass). In contrast, our approach generates one subband per
level for data of any dimension. Our method requires fewer
computations, and in our tests produces better compression.

5.2. Thresholding

The goal of the thresholding step is to reduce the num-
ber of values that need to be coded by setting insignifi-
cant wavelet coefficients to zero. An aggressive threshold-
ing method is required for efficient distance volume com-
pression. Our distance-based thresholding method removes
all wavelet coefficients that do not contribute to the recon-
structed surface. Thresholding too many coefficients could
result in spurious surface components appearing in the dis-
tance field. Currently, we do not have a formalism that al-
lows us to prove that new components or handles are not
added under the method we present. For complicated sur-
faces a verification step can be performed that checks the
original distance volume against the distance volume recon-
structed after the thresholding step and warns of any irreg-
ularities. The thresholding method presented here did not
modify the topology of surfaces we have tested.

Figure 5 illustrates the thresholding operation in 2D.
On the left is the wavelet transformed signed-distance field
showing five wavelet subbands. On the right we have
the original signed-distance field as computed for the two
curves shown inside. The support of a wavelet coefficient
in :� is shown as the shaded rectangle. The wavelet coeffi-
cient in :� can be thresholded because its support does not
effect the curves being represented.

Two methods are used to determine whether a given
wavelet coefficient should be set to zero. First, a bound-
ing sphere is computed that contains the wavelet support.
The distance value at the center of the sphere is sampled,
and if this distance is greater than the radius, the coefficient
is set to zero. If the radius of the bounding sphere is greater
than the distance value, then the surface must intersect the
sphere. For these coefficients, the distance values in the
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Figure 5. Distance based thresholding: the
coefficient in

���
is set to zero because its sup-

port shown on the right does not overlap the
curves.

support of the wavelet are examined, and the coefficient is
set to zero if all of the distance values are the same sign.

6. Zero Tree Coding

A progressive wavelet coder should send the most signif-
icant bits of the most significant wavelet coefficients first.
This amounts to encoding the locations of the significant
coefficients as efficiently as possible. A zero tree coder [22]
generates a progressive bit stream by utilizing the observa-
tion that wavelets decay in magnitude at finer resolutions.
That is, if one defines a hierarchy of wavelet coefficients
from one subband to the next it is likely that the child coef-
ficients will be smaller than the parent.

A zero tree is defined as a hierarchy of coefficients for
which ���
	 for every coefficient � in the hierarchy, where
	 is a threshold used to determine the significance of any
given coefficient. The zero tree hierarchy is based on obser-
vations of the decay of wavelet coefficients [22] in image
data and is independent of the support of the wavelets. The
zero tree relation is defined for a quadtree-like hierarchy
in 2D and an octree-like hierarchy in 3D. Figure 6 depicts
the 2D case for our subband ordering. Two hierarchies are
shown, one for the

�
direction (subbands 1, 3, and 5) and

one for the
!

direction (subbands 2 and 4). A zero tree coder
is particularly well suited to the distance based thresholding
method as the thresholded coefficients are spatially contigu-
ous.

The coding algorithm repeatedly traverses the wavelet
coefficients in a predefined order. At any point in the cod-
ing process the wavelet coefficients are divided into two
groups: those that are not yet significant, and those that
have been found to be significant during the current traver-
sal or a preceding one. The threshold 	 starts at half the
value of the largest wavelet coefficient, and is divided in

d4

d2

a5
5

d1

d3

d

Figure 6. Hierarchies of wavelet coefficients
for the zero tree relation. If all of the coef-
ficients are less than a given threshold, the
entire tree can be skipped until later in the
coding process.

half after each traversal. Thus, each traversal progressively
adds more wavelet coefficients to the significant group and
removes them from the insignificant group. A zero tree is
coded by a single symbol the informs the decoder that every
coefficient in the hierarchy is insignificant with respect to
the current threshold. Zero trees efficiently encode the po-
sitions of the insignificant coefficients. Once a coefficient
is deemed significant, its sign bit and its most significant
bit are transmitted. On each subsequent traversal another
bit is added to its representation. Our implementation fol-
lows [22] which contains pseudocode and a small worked
example of the algorithm.

7. Results

We demonstrate our system on two surfaces. First, a
horse model [5] provides a comparison of the performance
of the signed-distance volume approach with the subdivi-
sion surface approach in [14]. Second, we compress a large
isosurface to demonstrate the ability of our system to rep-
resent complex surfaces with many components. All file
sizes are the result of applying the gzip utility to the pro-
gressive bit-streams resulting from our zero tree coder. The
images referenced in this section were generated by extract-
ing a triangulation from the distance field and rendering the
triangles with smooth (Gouraud) shading.

Figure 7 shows four progressive reconstructions of the
horse model for increasing file sizes. The original horse
model consists of � � � �� vertices and / � � � ��� triangles. A
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Figure 7. Progressive reconstructions of the
horse model from a compressed distance vol-
ume of 96x208x173 samples.

good lossless non-progressive mesh compression algorithm
[24] generates between � � / � bits per vertex. Thus, one
could expect the lossless non-progressive compression of
the horse mesh to produce a file between � � � � � kilobytes in
size. Our progressive coding begins to represent the muscle
structure of the horse at about

� � kilobytes. Our algorithm
is of course a lossy compression technique.

Figure 8 compares the performance of the subdivi-
sion surface method of Khodakovsky [14] with our ap-
proach. The vertical axis in figure 8 shows the mean-
squared geometric error defined in section 3.1 normalized
to the bounding box diagonal. The cubic subdivision sur-
face approach produces smaller compressed sizes than the
distance-volume method for this smooth model. The base
mesh used for the subdivision method consists of / ��� ver-
tices. This small size enables quite efficient compression of
the base mesh. The subdivision-surface method utilizes cu-
bic B-spline wavelets, while the distance volume is decom-
posed over linear B-spline wavelets. The distance-volume
curve approaches a minimum possible error at large file
sizes. This limiting error is determined by the sampling rate
of the distance volume.

Figure 9 shows four reconstructions of a complex iso-
surface compressed with our system. The data set depicts
the turbulent mixing of two fluids [18] at a resolution of
2048x2048x1920. The isosurface shown here derives from
a subset of 256x256x384 samples. The distance transform
was computed at the same resolution as the subset of the
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Figure 8. Comparison of cubic subdivision
surface compression and wavelet signed-
distance volume compression for the horse
model. The signed-distance volume contains
96x208x173 samples.

scalar field. Our system retains the major features of the sur-
face for small sizes and achieves good compression through
topological modification. This surface is less well suited to
subdivision surface techniques as the size of the base mesh
is much larger due to the complex topology and large num-
ber of components.

Data Set Zero Set (s) Propagation (s)

Horse
(96x208x173)

95 54

Turbulence
(256x256x128)

17 157

Table 2. Elapsed times for the zero set initial-
ization and closest point propagation steps
of the distance transform.

Finally, we present performance results for our system.
Table 2 shows the time required for each stage of the dis-
tance transform. All times are reported for an SGI O2 work
station with

� � � megabytes of ram and a
� � � megahertz

MIPS R5000 processor. A smaller version of the turbulence
data was used to avoid virtual memory effects. The zero set
initialization cost of triangle meshes is due to the large num-
ber of intersection computations. In contrast, the simple lin-
ear approximation used for scalar field data is very efficient.
The propagation time is manageable even for large data sets.
Some improvement is possible if the distance samples are
reordered to improve cache coherence when visiting a sam-
ple’s 26-neighborhood.



The wavelet transform required / � / � seconds depend-
ing on the resolution of the data. This range of times reflects
data sets capable of fitting in the main memory of our work-
station. The distance based thresholding required 14 sec-
onds for a 32x68x57 distance volume of the horse model
and 52 seconds for a 96x208x173 volume. The threshold
time was roughly 2 minutes for the 256x256x384 turbu-
lence data. The turbulence data was processed on an Onyx
machine capable of holding all run time data structures in
main memory. The threshold times are the result of examin-
ing samples of the distance volume multiple times for each
wavelet coefficient near the surface. The zero tree coder
took from ��� � to

�
seconds for the horse model at various

resolutions and geometric errors. The zero tree coder took
between / and

� � seconds for the isosurface depending on
the number of bits produced.

8. Discussion

Our algorithm successfully produces progressive encod-
ings of signed-distance volumes. However, subdivision sur-
face approaches still produce more compact surface repre-
sentations for smooth surfaces. One drawback of our cur-
rent implementation is the use of the gzip utility as a back-
end. This is less efficient than an entropy coding technique
specifically tailored for wavelet transforms. An arithmetic
coder applied to the coefficient magnitudes should reduce
the file sizes even further.

The geometric error for small bit counts can be improved
by modifying the ordering of the bits. A standard zero tree
coder assumes an $ � error because the significance test
depends only on the value of the coefficient and not on
the size of the corresponding wavelet support. It is possi-
ble for wavelet coefficients at the finest level to have bits
emitted along with coefficients at a coarser level. However,
the mean-squared geometric error metric integrates over the
surface area, implying that the significance test should in-
clude the support of the wavelet. Incorporating the support
of the wavelets would insure that all of the early bits in-
crease the accuracy of the coarser scale wavelets instead of
potentially adding fine scale wavelets, thus improving the
overall error.

The encoding process should be modified so that the
topology is simplified at early stages and is refined as more
bits are added. Our implementation does not track topology
changes and allows both simplifications and refinements to
occur. This can produce holes in thin shapes at small num-
bers of bits that disappear later in the decoding process. A
method for ordering the topology changes and increasing
the significance of the wavelet coefficients affecting those
areas could mitigate this problem. Topological modifica-
tion requires that new error metrics be constructed that do
not overly penalize surfaces for which many small compo-

nents have been eliminated in favor of larger ones. The er-
ror metric used in this paper over-emphasizes the errors of
small components that have been removed at early stages of
reconstruction.

Finally, an important area of future work is to char-
acterize the trade offs between low-order compact basis
functions and higher order basis functions with large sup-
port. For smooth functions, higher order wavelets are more
efficient and exhibit faster convergence than lower order
wavelets. However, higher order basis functions have larger
support, resulting in fewer thresholded coefficients.

9. Conclusion

We have presented an algorithm that produces progres-
sively compressed signed-distance volumes. Our method
does not require a re-meshing step and can handle surfaces
with an arbitrary number of components given an appro-
priate sampling rate. Our representation does not explicitly
represent the surface topology, enabling topological mod-
ification without complicating the data structures used in
the implementation. We believe our approach is best suited
to surfaces with complicated topology and many compo-
nents. Time-varying surfaces pose many problems that can
be overcome with an implicit representation. We believe
our compression techniques can be extended to the time do-
main to produce an efficient yet simple surface representa-
tion.
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Figure 9. Progressive reconstructions of an isosurface of a turbulent mixing simulation.


